
- ACTS -
A Reliable Software Infrastructure

for Scientific Computing

Osni Marques
Lawrence Berkeley National Laboratory (LBNL)

oamarques@lbl.gov

UC Berkeley - CS267

04/13/2005UC Berkeley - CS267 2

Outline

• Keeping the pace with the software and hardware
• Hardware evolution
• Performance tuning
• Software selection
• What is missing?

• The DOE ACTS Collection Project
• Goals
• Current features
• Lessons learned

04/13/2005UC Berkeley - CS267 3

Projected Performance Development

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

N=1

N=500

SUM

ES

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

10 Pflop/s

100 Pflop/s

Courtesy of Erich Strohmaier
http://www.top500.org

04/13/2005UC Berkeley - CS267 4

Automatic Tuning

• For each kernel
1. Identify and generate a space of

algorithms
2. Search for the fastest one, by running

them
• What is a space of algorithms?

• Depending on kernel and input, may
vary

• instruction mix and order
• memory access patterns
• data structures
• mathematical formulation

• When do we search?
• Once per kernel and architecture
• At compile time
• At run time
• All of the above

• PHiPAC:
www.icsi.berkeley.edu/~bilmes/phipac

• ATLAS:
www.netlib.org/atlas

• XBLAS:
www.nersc.gov/~xiaoye/XBLAS

• Sparsity: www.cs.berkeley.edu/~yelick/sparsity
• FFTs and Signal Processing

• FFTW: www.fftw.org
• Won 1999 Wilkinson Prize for

Numerical Software
• SPIRAL: www.ece.cmu.edu/~spiral

• Extensions to other transforms, DSPs
• UHFFT

• Extensions to higher dimension,
parallelism

04/13/2005UC Berkeley - CS267 5

What About Software Selection?

• Use a direct solver (A=LU) if
• Time and storage space acceptable
• Iterative methods don’t converge
• Many b’s for same A

• Criteria for choosing a direct solver
• Symmetric positive definite (SPD)
• Symmetric
• Symmetric-pattern
• Unsymmetric

• Row/column ordering schemes available
• MMD, AMD, ND, graph partitioning

• Hardware

bAx = :Example

Build a preconditioning matrix K such that
Kx=b is much easier to solve than Ax=b and
K is somehow “close” to A (incomplete LU
decompositions, sparse approximate
inverses, polynomial preconditioners,
preconditioning by blocks or domains,
element-by-element, etc). See Templates for
the Solution of Linear Systems: Building
Blocks for Iterative Methods.

04/13/2005UC Berkeley - CS267 6

Bugs…
On February 25, 1991, during the Gulf
War, an American Patriot Missile
battery in Dharan, Saudi Arabia, failed
to track and intercept an incoming
Iraqi Scud missile. The Scud struck an
American Army barracks, killing 28
soldiers and injuring around 100 other
people. The problem was an inaccurate
calculation of the time since boot due
to computer arithmetic errors.

http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html

On June 4, 1996, an Ariane 5 rocket launched by the European Space
Agency exploded just forty seconds after its lift-off from Kourou, French
Guiana. The rocket was on its first voyage, after a decade of
development costing $7 billion. The problem was a software error in the
inertial reference system. Specifically a 64 bit floating point number
relating to the horizontal velocity of the rocket with respect to the
platform was converted to a 16 bit signed integer.

On August 23,1991, he first concrete base structure
for the Sleipner A platform sprang a leak and sank
under a controlled ballasting operation during
preparation for deck mating in Gandsfjorden outside
Stavanger, Norway. The post accident investigation
traced the error to inaccurate finite element
approximation of the linear elastic model of the tricell
(using the popular finite element program NASTRAN).
The shear stresses were underestimated by 47%
leading to insufficient design. In particular, certain
concrete walls were not thick enough.

04/13/2005UC Berkeley - CS267 7

Components: simple example

)
2

()(
1

1∑∫
=

− +−≈
n

j

jj
b

a

xx
f

n
abdxxf

a b
x

)(xf

Numerical integration: midpoint

−
≈ ∑∫

=

N

i
n

b

a

xf
Nab

dxxf
1

)(11)(

Numerical integration: Monte Carlo

a b

)(xf

x

xxf 2)(2 =

2
1)(xxf =

23 1
4)(
x

xf
+

=

04/13/2005UC Berkeley - CS267 8

The DOE ACTS CollectionThe DOE ACTS CollectionThe DOE ACTS CollectionThe DOE ACTS Collection

Goals
� Collection of tools for developing parallel applications

� Extended support for experimental software

� Make ACTS tools available on DOE computers

� Provide technical support (acts-support@nersc.gov)

� Maintain ACTS information center (http://acts.nersc.gov)

� Coordinate efforts with other supercomputing centers

� Enable large scale scientific applications

� Educate and train

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• More code development in less time
• More simulation in less computer time

• High
• Intermediate level
• Tool expertise
• Conduct tutorials

• Intermediate
• Basic level
• Higher level of support to users of the tool

• Basic
• Help with installation
• Basic knowledge of the tools
• Compilation of user’s reports

Levels of Supporthttp://acts.nersc.govhttp://acts.nersc.gov

http://acts.nersc.gov

Tools for the automatic generation of optimized numerical software for modern computer architectures and compilers.ATLASLibrary
Development

Set of tools for analyzing the performance of C, C++, Fortran and Java programs.TAU

Services for the creation of computational Grids and tools with which applications can be developed to access the Grid.Globus

Framework that enables programmers to incorporate fault-tolerance, interactive visualization and computational
steering into existing parallel programs

CUMULVS

Code Execution

Object-Oriented tools for solving computational fluid dynamics and combustion problems in complex geometries.Overture

Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-
memory view of distributed arrays.

Global Arrays
Code Development

General-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations.SuperLU

Library of high performance dense linear algebra routines for distributed-memory message-passing.ScaLAPACK

Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-
algebraic equations.

SUNDIALS

Object-oriented nonlinear optimization package.OPT++

Tools for the solution of PDEs that require solving large-scale, sparse linear and nonlinear systems of equations.PETSc

Algorithms for the iterative solution of large sparse linear systems, intuitive grid-centric interfaces, and dynamic
configuration of parameters.

Hypre

Algorithms for the iterative solution of large sparse linear systems.Aztec/Trilinos

Large-scale optimization software, including nonlinear least squares, unconstrained minimization, bound constrained
optimization, and general nonlinear optimization.

TAO

Numerical

FunctionalitiesToolCategory

Current ACTS Tools and their Functionalities

04/13/2005UC Berkeley - CS267 10

ScaLAPACK: Applications

Induced current (white arrows) and charge density
(colored plane and gray surface) in crystallized

glycine due to an external field (Louie, Yoon,
Pfrommer and Canning), eigenvalue problems solved

with ScaLAPACK.

Advanced Computational Research in Fusion (SciDAC
Project, PI Mitch Pindzola). Point of contact: Dario Mitnik

(Dept. of Physics, Rollins College). Mitnik attended the
workshop on the ACTS Collection in September 2000. Since
then he has been actively using some of the ACTS tools, in
particular ScaLAPACK, for which he has provided insightful
feedback. Dario is currently working on the development,

testing and support of new scientific simulation codes
related to the study of atomic dynamics using time-

dependent close coupling lattice and time-independent
methods. He reports that this work could not be carried out
in sequential machines and that ScaLAPACK is fundamental

for the parallelization of these codes.

The international BOOMERanG
collaboration announced results of the most detailed measurement of the
cosmic microwave background radiation (CMB), which strongly indicated that
the universe is flat (Apr. 27, 2000). Likelihood methods implemented in the
MADCAP software package, using routines from ScaLAPACK, were used to
examine the large dataset generated by BOOMERanG.

Performance of four science-of-scale applications
that use ScaLAPACK functionalities on an IBM SP

04/13/2005UC Berkeley - CS267 11

ScaLAPACK: software structure

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Clarity,modularity, performance
and portability. Atlas can be

used here for automatic tuning.

Clarity,modularity, performance
and portability. Atlas can be

used here for automatic tuning.

Linear systems, least
squares, singular

value decomposition,
eigenvalues.

Linear systems, least
squares, singular

value decomposition,
eigenvalues.

Communication
routines targeting

linear algebra
operations.

Communication
routines targeting

linear algebra
operations.

Parallel BLAS.Parallel BLAS.

Communication layer
(message passing).

Communication layer
(message passing).

http://acts.nersc.gov/scalapack

Version 1.7 released in August 2001; recent
NSF funding for further development.

Version 1.7 released in August 2001; recent
NSF funding for further development.

04/13/2005UC Berkeley - CS267 12

ScaLAPACK: goals

• Efficiency
• Optimized computation and communication engines
• Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
• Whenever possible, use LAPACK algorithms and error bounds.

• Scalability
• As the problem size and number of processors grow
• Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
• Isolate machine dependencies to BLAS and the BLACS

• Flexibility
• Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
• Calling interface similar to LAPACK

04/13/2005UC Berkeley - CS267 13

• Similar to the BLAS in portability, functionality and naming:
• Level 1: vector-vector operations
• Level 2: matrix-vector operations
• Level 3: matrix-matrix operations

CALL DGEXXX(M, N, A(IA, JA), LDA, ...)

CALL PDGEXXX(M, N, A, IA, JA, DESCA, ...)

• Built atop the BLAS and BLACS
• Provide global view of

the matrix operands

PBLAS

BLAS

PBLAS

(Parallel Basic Linear Algebra Subroutines)

array descriptor
(see next slides)

array descriptor
(see next slides)

A(IA:IA+M-1,JA:JA+N-1)

JA

IA

N_

N

MM_

04/13/2005UC Berkeley - CS267 14

BLACS

• A design tool, they are a conceptual aid in design and
coding.

• Associate widely recognized mnemonic names with
communication operations. This improves:
• program readability
• self-documenting quality of the code.

• Promote efficiency by identifying frequently occurring
operations of linear algebra which can be optimized on
various computers.

(Basic Linear Algebra Communication Subroutines)

04/13/2005UC Berkeley - CS267 15

BLACS: basics

• Processes are embedded in a two-dimensional grid.

• An operation which involves more than one sender
and one receiver is called a scoped operation.

10 32

0

0

1 2 3

54 76

98 1110

1

2

Scope Meaning
Row All processes in a process row participate.
Column All processes in a process column participate.
All All processes in the process grid participate.

Example:
a 3x4 grid
Example:
a 3x4 grid

04/13/2005UC Berkeley - CS267 16

* Get system information

CALL BLACS_PINFO(IAM, NPROCS)

* Get default system context

CALL BLACS_GET(0, 0, ICTXT)

llll

* Define 1 x (NPROCS/2+1) process grid

NPROW = 1

NPCOL = NPROCS / 2 + 1

CALL BLACS_GRIDINIT(ICTXT, ‘Row’, NPROW, NPCOL)

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

* If I’m not in the grid, go to end of program

IF(MYROW.NE.-1) THEN
IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN

CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)
ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN

CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)
END IF

llll

CALL BLACS_GRIDEXIT(ICTXT)

END IF

CALL BLACS_EXIT(0)

END

BLACS: example

(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

(output) process row and
column coordinate

(out) uniquely identifies each process
(out) number of processes available

See http://www.netlib.org/blacs
for more information.

• The BLACS context is the
BLACS mechanism for
partitioning communication
space.

• A message in a context cannot
be sent or received in another
context.

• The context allows the user to
• create arbitrary groups of

processes
• create multiple

overlapping and/or disjoint
grids

• isolate each process grid so
that grids do not interfere
with each other

• BLACS context ⇔⇔⇔⇔ MPI
communicator

send X to process (1,0)

receive X from process (0,0)

leave context

exit from the BLACS

04/13/2005UC Berkeley - CS267 17

ScaLAPACK: data layouts

• 1D block and cyclic column distributions

• 1D block-cycle column and 2D block-cyclic distribution
• 2D block-cyclic used in ScaLAPACK for dense matrices

04/13/2005UC Berkeley - CS267 18

ScaLAPACK: 2D Block-Cyclic Distribution (1/2)

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

0 1

2 3

04/13/2005UC Berkeley - CS267 19

ScaLAPACK: 2D Block-Cyclic Distribution (2/2)

−−−−
−−−

−−
−

5.54.53.52.51.5
5.44.43.42.41.4
5.34.33.32.31.3
5.24.23.22.21.2
5.14.13.12.11.1 llll

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN
A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;

ELSE IF (MYROW.EQ.0 .AND. MYCOL.EQ.1) THEN
A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN
A(1) = -3.1; A(2) = -4.1;
A(1+LDA) = -3.2; A(2+LDA) = -4.2;
A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.1) THEN
A(1) = 3.3; A(2) = -4.3;
A(1+LDA) = 3.4; A(2+LDA) = 4.4;

END IF
llll

CALL PDGESVD(JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
INFO)

llll

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

0 1

2 3

0 1

0

1

LDA is the leading
dimension of the local
array (see next slides)

LDA is the leading
dimension of the local
array (see next slides)

Array descriptor for A
(see next slides)

Array descriptor for A
(see next slides)

04/13/2005UC Berkeley - CS267 20

2D Block-Cyclic Distribution

http://acts.nersc.gov/scalapack/hands-on/datadist.html

04/13/2005UC Berkeley - CS267 21

2D Block-Cyclic Distribution: pros and cons

• Ensures good load balance → performance and scalability
(analysis of many algorithms to justify this layout).

• Encompasses a large number of data distribution schemes
(but not all).

• Needs redistribution routines to go from one distribution to
the other.

04/13/2005UC Berkeley - CS267 22

ScaLAPACK: array descriptors

• Each global data object is assigned an array descriptor
• The array descriptor:

• Contains information required to establish mapping between a
global array entry and its corresponding process and memory location
(uses concept of BLACS context).

• Is differentiated by the DTYPE_ (first entry) in the descriptor.
• Provides a flexible framework to easily specify additional data

distributions or matrix types.

• User must distribute all global arrays prior to the invocation
of a ScaLAPACK routine, for example:
• Each process generates its own submatrix.
• One processor reads the matrix from a file and send pieces to other

processors (may require message-passing for this).

04/13/2005UC Berkeley - CS267 23

Array Descriptor for Dense Matrices

DESC_() Symbolic Name Scope Definition

1
2
3
4
5

6

7

8

9

DTYPE_A
CTXT_A
M_A
N_A
MB_A

NB_A

RSRC_A

CSRC_A

LLD_A

(global)
(global)
(global)
(global)
(global)

(global)

(global)

(global)

(local)

Descriptor type DTYPE_A=1 for dense matrices.
BLACScontext handle.
Number of rows in global array A.
Number of columns in global array A.
Blocking factor used to distribute the rows of
array A.
Blocking factor used to distribute the columns
of array A.
Process row over which the first row of the
array A is distributed.
Process column over which the first column of
the array A is distributed.
Leading dimension of the local array.

04/13/2005UC Berkeley - CS267 24

Array Descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition

1

2
3
4

5

6

7

DTYPE_A

CTXT_A
N_A
NB_A

CSRC_A

LLD_A

−−−−

(global)

(global)
(global)
(global)

(global)

(local)

−−−−

Descriptor type DTYPE_A=501 for 1 x Pc process
grid for band and tridi agonal matrices block-column
distributed.
BLACS context handle.
Number of columns in global array A.
Blocking factor used to distribute the columns of
array A.
Process column over which the first column of the
array A is distributed.
Leading dimension of the local array. For the
tridiagonal subroutines, this entry is ignored.
Unused, reserved.

04/13/2005UC Berkeley - CS267 25

Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

1

2
3
4
5

6

7

DTYPE_B

CTXT_B
M_B
MB_B
RSRC_B

LLD_B

−−−−

(global)

(global)
(global)
(global)
(global)

(local)

−−−−

Descriptor type DTYPE_B=502 for Pr x 1 process grid
for block -row distributed matrices .
BLACS context handle.
Number of rows in global array B
Blocking factor used to distribute the rows of array B.
Process row over which the first row of the array B is
distributed.
Leading dimension of the local array. For the
tridiagonal subroutines, this entry is i gnored.
Unused, reserved.

04/13/2005UC Berkeley - CS267 26

ScaLAPACK: Functionality

xx
x
x

xLeast Squares
GQR
GRQ

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx

xxxx
xxxx
xxxx

Symmetric
General
Generalized BSPD
SVD

SolutionReductionExpert
Driver

Simple
Driver

Ax = λλλλx or Ax = λλλλBx

xxxx
x
x

x
x
x

xx
x
x

General
General Banded
General Tridiagonal

xxxx
x
x

x
x
x

xx
x
x

SPD
SPD Banded
SPD Tridiagonal

xxxxTriangular

Iterative
Refinement

Conditioning
Estimator

InversionSolveFactorExpert
Driver

Simple
Driver

Ax = b

On line tutorial: http://acts.nersc.gov/scalapack/hands-on/main.html

04/13/2005UC Berkeley - CS267 28

Contents of hands-on/example0

pdgesvddrv.f: reads a (full) matrix A from a file, distributes A among the available processors and then
call the ScaLAPACK subroutine PDGESVD to computed the SVD of A, A=USV T. It requires the file
pdgesvddrv.dat, which should contain: line 1, the name of the file where A will be read from; line 2,
the number of rows of A; line 3: the number of columns of A. Considering the file A.dat:

• if m=n=10 the results are given in the file A.SVD
• if m=10, n=7: diag(S)=[4.4926 1.4499 0.8547 0.8454 0.6938 0.4332 0.2304]
• if m=7, n=10: diag(S)=[4.5096 1.1333 1.0569 0.8394 0.8108 0.5405 0.2470]

pddttrdrv.c (pddttrdrv.f): illustrates the
use of the ScaLAPACK routines
PDDTTRF and PDDTTRS to factor and
solve a (diagonally dominant) tridiagonal
system of linear equations Tx = b. After
compilation, it can be executed with
llsubmit pddttrdrv.job.

pdpttr_2.c (pdpttr_2.f): illustrates the use
of the ScaLAPACK routines PDPTTRF
and PPPTTRS to factor and solve a
symmetric positive definite tridiagonal
system of linear equations Tx = b, in two
distinct contexts. After compilation, it can
be executed with llsubmit pdpttr_2.job.

/**/
/* This program illustrates the use of the ScaLAPACK routines PDPTTRF */
/* and PPPTTRS to factor and solve a symmetric positive definite */
/* tridiagonal system of linear equations, i.e., T*x = b, with */
/* different data in two distinct contexts. */
/**/

/* a bunch of things omitted for the sake of space */

main()
{

/* Start BLACS */
Cblacs_pinfo(&mype, &npe);
Cblacs_get(0, 0, &context);
Cblacs_gridinit(&context, "R", 1, npe);
/* Processes 0 and 2 contain d(1:4) and e(1:4) */
/* Processes 1 and 3 contain d(5:8) and e(5:8) */
if (mype == 0 || mype == 2){

d[0]=1.8180; d[1]=1.6602; d[2]=1.3420; d[3]=1.2897;
e[0]=0.8385; e[1]=0.5681; e[2]=0.3704; e[3]=0.7027;

}
else if (mype == 1 || mype == 3){

d[0]=1.3412; d[1]=1.5341; d[2]=1.7271; d[3]=1.3093;
e[0]=0.5466; e[1]=0.4449; e[2]=0.6946; e[3]=0.0000;

}
if (mype == 0 || mype == 1) {

/* New context for processes 0 and 1 */
map[0]=0; map[1]=1;
Cblacs_get(context, 10, &context_1);
Cblacs_gridmap(&context_1, map, 1, 1, 2);
/* Right-hand side is set to b = [1 2 3 4 5 6 7 8] */
if (mype == 0) {

b[0]=1.0; b[1]=2.0; b[2]=3.0; b[3]=4.0;
}
else if (mype == 1) {

b[0]=5.0; b[1]=6.0; b[2]=7.0; b[3]=8.0;
}
/* Array descriptor for A (D and E) */
desca[0]=501; desca[1]=context_1; desca[2]=n; desca[3]=nb;
desca[4]=0; desca[5]=lda; desca[6]=0;
/* Array descriptor for B */
descb[0]=502; descb[1]=context_1; descb[2]=n; descb[3]=nb;
descb[4]=0; descb[5]=ldb; descb[6]=0;
/* Factorization */
pdpttrf(&n, d, e, &ja, desca, af, &laf,

work, &lwork, &info);
/* Solution */
pdpttrs(&n, &nrhs, d, e, &ja, desca, b, &ib, descb,

af, &laf, work, &lwork, &info);
printf("MYPE=%i: x[:] = %7.4f %7.4f %7.4f %7.4f\n",

mype, b[0], b[1], b[2], b[3]);
}

else {
/* New context for processes 0 and 1 */
map[0]=2; map[1]=3;
Cblacs_get(context, 10, &context_2);
Cblacs_gridmap(&context_2, map, 1, 1, 2);
/* Right-hand side is set to b = [8 7 6 5 4 3 2 1] */
if (mype == 2) {

b[0]=8.0; b[1]=7.0; b[2]=6.0; b[3]=5.0;
}
else if (mype == 3) {

b[0]=4.0; b[1]=3.0; b[2]=2.0; b[3]=1.0;
}
/* Array descriptor for A (D and E) */
desca[0]=501; desca[1]=context_2; desca[2]=n; desca[3]=nb;
desca[4]=0; desca[5]=lda; desca[6]=0;
/* Array descriptor for B */
descb[0]=502; descb[1]=context_2; descb[2]=n; descb[3]=nb;
descb[4]=0; descb[5]=ldb; descb[6]=0;
/* Factorization */
pdpttrf(&n, d, e, &ja, desca, af, &laf,

work, &lwork, &info);
/* Solution */
pdpttrs(&n, &nrhs, d, e, &ja, desca, b, &ib, descb,

af, &laf, work, &lwork, &info);
printf("MYPE=%i: x[:] = %7.4f %7.4f %7.4f %7.4f\n",

mype, b[0], b[1], b[2], b[3]);
}
Cblacs_gridexit(context);
Cblacs_exit(0);

}

Using Matlab notation:

T = diag(D)+diag(E,-1)+diag(E,1)

where

D = [1.8180 1.6602 1.3420 1.2897 1.3412 1.5341 1.7271 1.3093]
E = [0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946]

Then, solving T*x = b,

if b = [1 2 3 4 5 6 7 8]
x = [0.3002 0.5417 1.4942 1.8546 1.5008 3.0806 1.0197 5.5692]

if b = [8 7 6 5 4 3 2 1]
x = [3.9036 1.0772 3.4122 2.1837 1.3090 1.2988 0.6563 0.4156]

04/13/2005UC Berkeley - CS267 30

Global Arrays (GA) wrappers

• Simpler than message-passing for many
applications

• Complete environment for parallel code
development

• Data locality control similar to distributed
memory/message passing model

• Compatible with MPI

• Scalable

Distributed Data: data is explicitly
associated with each processor,
accessing data requires specifying the
location of the data on the processor and
the processor itself.
Shared Memory: data is an a globally
accessible address space, any processor
can access data by specifying its location
using a global index.
GA: distributed dense arrays that can be
accessed through a shared memory-like style.

http://www.emsl.pnl.gov/docs/global/ga.html

04/13/2005UC Berkeley - CS267 31

Who Benefits from these tools?

... More Applications …

http://acts.nersc.gov/AppMathttp://acts.nersc.gov/AppMat

Enabling sciences
and discoveries…

with
high performance
and scalability...

04/13/2005UC Berkeley - CS267 32

TAU - Tuning and Performance Analysis

• Multi-level performance instrumentation
• Multi-language automatic source instrumentation

• Flexible and configurable performance measurement
• Widely-ported parallel performance profiling system

• Computer system architectures and operating systems
• Different programming languages and compilers

• Support for multiple parallel programming paradigms
• Multi-threading, message passing, mixed-mode, hybrid

• Support for performance mapping
• Support for object-oriented and generic programming
• Integration in complex software systems and applications

04/13/2005UC Berkeley - CS267 33

Study Case: Electronic Structure Calculations Code

…

04/13/2005UC Berkeley - CS267 34

Using TAU_COMPILER in previous example

04/13/2005UC Berkeley - CS267 35

• Libraries written in different
languages.

• Different pieces of the code evolve at
different rates

• Swapping competing
implementations of the same idea and
testing without modifying the code

• Libraries written in different
languages.

• Different pieces of the code evolve at
different rates

• Swapping competing
implementations of the same idea and
testing without modifying the code

Challenges in the Development of Scientific Codes
• Productivity

• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Interdisciplinarity
• Model coupling

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications

• Productivity
• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Interdisciplinarity
• Model coupling

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications

Peak performance is skyrocketing
� In 1990s, peak performance increased 100x; in

2000s, it will increase 1000x
However

� Efficiency for many science applications declined
from 40-50% on the vector supercomputers of
1990s to as little as 5-10% on parallel
supercomputers of today

Peak performance is skyrocketing
� In 1990s, peak performance increased 100x; in

2000s, it will increase 1000x
However

� Efficiency for many science applications declined
from 40-50% on the vector supercomputers of
1990s to as little as 5-10% on parallel
supercomputers of today

0.1

1

10

100

1,000

2000 2004

Te
ra

flo
ps

1996

Performance
Gap

Peak Performance

Real Performance

http://acts.nersc.govhttp://acts.nersc.gov

Tool descriptions,
installation

details, examples,
etc

Agenda,
accomplishments,

conferences,
releases, etc

Goals and other
relevant information

Points of
contact

Search
engine

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• Scientific Computing Centers
• Reduce user’s code development

time that sums up in more
production runs and faster and
effective scientific research results

• Overall better system utilization
• Facilitate the accumulation and

distribution of high performance
computing expertise

• Provide better scientific parameters
for procurement and
characterization of specific user
needs

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• Scientific Computing Centers
• Reduce user’s code development

time that sums up in more
production runs and faster and
effective scientific research results

• Overall better system utilization
• Facilitate the accumulation and

distribution of high performance
computing expertise

• Provide better scientific parameters
for procurement and
characterization of specific user
needs

� Compframe 2005
� ACTS Workshop 2005

